
Head-Motion Detection for 
Computer Interfacing
Christian Cherry

December 8 2025

18444C Embedded Machine Learning



Project Overview

https://iris.hattiesburgclinic.com/patadv/exkit/Geriatric%20Resource%20Library/English/0300000583arth3m_English.html

❖ General use computers and keyboards are 
commonly made to be used with hands

❖ Disabled individuals who canʼt extensively use their 
hands may have trouble using computers

❖ GOAL Use Edge AI to detect different head motions 
of a user to interface with various devices, making 
for easier use of a computer or application for those 
who have trouble using their hands 



Why Embedded ML?

Using Embedded ML for head motion detection allows for an accessible and 
modular way to control a computer using head gestures.

❖ Bandwidth: A lot less data to process with camera feature extraction 
versus processing large video data

❖ Latency: Collecting data from a computer camera increases latency 
versus running an separate on-device model

❖ Economics: The cost of buying an Embedded ML device is more 
accessible than having to buy an entire computer to use the same 
feature

❖ Reliability: No reliance on network connection, can be portable and 
modular to other devices without relying on a specific computerʼs 
camera system

❖ Privacy: Having on-device compute without transferring facial data 
gives users a guarantee that their information is secure



Block Diagram

Head Position 
Image Data 

Preprocessing 
and 

Normalization

Transfer 
Learning from 
MobileNetV2 
Architecture

Model Training 
and Testing

Arduino 
Deployment to 

ESP32S3
Head Motion 
Inferencing

Computer 
Device Control



Data Collection

❖ Head pose estimation dataset 
from Kaggle.

❖ Used AI-labeling in Edge Impulse 
for “up ,ˮ “down ,ˮ “left ,ˮ “right ,ˮ 
and “straightˮ labels.

❖ Challenge: Manually cleaning up 
dataset for more accurate labels 
took quite a while.



Preprocessing an NN Architecture

❖ Utilized Edge Impulseʼs built in Image 
pre-processing

❖ Challenge: I initially used a pre-trained 
pose estimation block, which had way 
better accuracy, but this turned out to be 
too big to fit on my embedded camera

❖ Utilized the MobileNetV2 160160 0.35 
NN architecture to train model

❖ Challenge: Since only int8 quantization 
fits on my embedded camera, finding 
the right balance of efficiency and 
accuracy with the MobileNet 
architectures took much trial and error.



Training and Testing Results

The model has the most trouble classifying when your head is “straight .ˮ



Model Deployment

❖ Once the model is deployed, we connect 
the XAO ESP32S3 to our computer via a 
TinyUSB Adafruit library.

❖ Real-time deployment yields a 
classification time of 200ms.

❖ We can then develop an embedded ML 
application to detect head motions to 
control the computer interface.

❖ Challenge: The accuracy of the 
real-time model is heavily biased 
towards “upˮ and “down ,ˮ which is 
comes from combination of physical 
position sensitivity and model accuracy 
80%. In addition, accuracy decreases 
when there are multiple people in the 
camera frame.


