December 8

2025

Head-Motion Detection for

Computer Interfacing

Christian Cherry

18-444C Embedded Machine Learning

Project Overview

¢ General use computers and keyboards are

commonly made to be used with hands

+» Disabled individuals who can't extensively use their
hands may have trouble using computers

#» GOAL: Use Edge Al to detect different head motions
of a user to interface with various devices, making
for easier use of a computer or application for those
who have trouble using their hands

https://iris.hattiesburgclinic.com/patadv/exkit/Geriatric%20Resource%20Library/English/0300000583arth3m_English.html

Why Embedded ML?

Using Embedded ML for head motion detection allows for an accessible and
modular way to control a computer using head gestures.

0
Q“

0
Q“

Bandwidth: A lot less data to process with camera feature extraction
versus processing large video data

Latency: Collecting data from a computer camera increases latency
vVersus running an separate on-device model

Economics: The cost of buying an Embedded ML device is more
accessible than having to buy an entire computer to use the same
feature

Reliability: No reliance on network connection, can be portable and
modular to other devices without relying on a specific computer's
camera system

Privacy: Having on-device compute without transferring facial data
gives users a guarantee that their information is secure

Block Diagram

Head Position
Image Data

Head Motion
Inferencing

Preprocessing
and
Normalization

Arduino

Deployment to
ESP32-S3

Computer
Device Control

Transfer
Learning from
MobileNetV2
Architecture

Model Training
and Testing

Data Collection

@%) « scotT MADER - UPDATED 4 YEARS AGO

Biwi Kinect Head Pose Database

Realtime head pose evaluation using RGBD data S

0’0
DataCard Code (4) Discussion (3) Suggestions (0)

About Dataset <,
%

Context

Because cheap consumer devices (e.g., Kinect) acquire row-resolution, noisy depth data, we could not train our algorithm on clean,

synthetic images as was done in our previous CVPR work. Instead, we recorded several people sitting in front of a Kinect (at about one

meter distance). The subjects were asked to freely turn their head around, trying to span all possible yaw/pitch angles they could

perform.

frame_00143_rgh frame_00225 rgb frame_00153 rgb frame_00235_rgh frame_00092_rgh frame_00188_rgh @,

%

Nm
frame_00402_rgh

m

ame_00326_rgb

vm
frame_00076_rgb

aATE

frame_00004_rgh

"E "E1 R R R

frame 00247 rgb frame_00121_rgb frame_00300_rgb

frame_00066_rgh frame_00181_rgb

Head pose estimation dataset
from Kaggle.

Used Al-labeling in Edge Impulse
for “up”, “"down”, “left”, “right”,
and "straight” labels.

Challenge: Manually cleaning up
dataset for more accurate labels
took quite a while.

Preprocessing an NN Architecture

Utilized Edge Impulse’s built in Image
pre-processing

Challenge: | initially used a pre-trained
pose estimation block, which had way
better accuracy, but this turned out to be
too big to fit on my embedded camera

Utilized the MobileNetV2 160x160 0.35
NN architecture to train model

Challenge: Since only int8 quantization
fits on my embedded camera, finding
the right balance of efficiency and
accuracy with the MobileNet
architectures took much trial and error.

Training and Testing Results

Test data

Model testing output

Set the 'expected outcome' for each sample to the desired outcome to automatically score the impulse.

frame_00082_rgb

frame_00198_rgb

frame_00412_rgb

frame_00257_rgb

frame_00131_rgb

frame_00372_rgb

frame_00615_rgb

frame_00032_rgb

frame_00597_rgb

frame_00203_rgb

frame_00604_rgb

frame_00164_rgb

frame_00256_rgb

Results Model version: ®

76.89%

Metrics for Transfer learning

uncertain

left Area under ROC Curve @

Weighted average Precision @

up
Weighted average Recall @

uncertain Weighted average F1 score ®

Confusion matrix

uncertain

Feature explorer ®

down - correct

left - correct

right - correct Soevs
straight - correct

up - correct

The model has the most trouble classifying when your head is “straight”.

Quantized (int8) ~

Model Deployment

XIAO_ESP32S3:

Product ID:

Vendor ID:

Version:

Speed:

Manufacturer:

Location ID:

Current Available (mA):
Current Required (mA):

Extra Operating Current (mA):

2 6) | ¢ xinoesp3zs3 -

espd2_camera.ino

0x0056

0x2886

1.00

Up to 12 Mb/s
Espressif Systems
0x03100000 /1
500

100

0

0xe9, 0xo1,
oxA1, 0xo1,
0x8s, 0xo1,
x15, 0x00,
46 @x26, OXFF, 0x03, // L
47 0x19, 0x00, /1 u
48 @x2A, OXFF, 0x03, //
49 ox75, 0x10, 1/ R
50 0x95, 0x01,

Output ~ Serial Monitor X

Detected n (value: 0.904948)
VOLUME DOWN

Predictions (DSP: 4 ms., Classification: 200

¥ 0=

H New Line - H 115200 baud v

Detected: down (value: 0.705729) o

€Y voLumE pown

Ln 244, Col 89 XIAO_ESP32S3 on /dev/cu.usbmodem3101 (32 B

£ %4

Once the model is deployed, we connect
the XAO ESP32-S3 to our computer via a
TinyUSB Adafruit library.

Real-time deployment yields a
classification time of 200ms.

We can then develop an embedded ML
application to detect head motions to
control the computer interface.

Challenge: The accuracy of the
real-time model is heavily biased
towards “up” and “down”, which is
comes from combination of physical
position sensitivity and model accuracy
<80%. In addition, accuracy decreases
when there are multiple people in the
camera frame.

