December 8

2025

Head-Motion Detection for

Computer Interfacing

Christian Cherry

18-444C Embedded Machine Learning




Project Overview

¢ General use computers and keyboards are

commonly made to be used with hands

+» Disabled individuals who can't extensively use their
hands may have trouble using computers

#» GOAL: Use Edge Al to detect different head motions
of a user to interface with various devices, making
for easier use of a computer or application for those
who have trouble using their hands

https://iris.hattiesburgclinic.com/patadv/exkit/Geriatric%20Resource%20Library/English/0300000583arth3m_English.html



Why Embedded ML?

Using Embedded ML for head motion detection allows for an accessible and
modular way to control a computer using head gestures.
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Bandwidth: A lot less data to process with camera feature extraction
versus processing large video data

Latency: Collecting data from a computer camera increases latency
vVersus running an separate on-device model

Economics: The cost of buying an Embedded ML device is more
accessible than having to buy an entire computer to use the same
feature

Reliability: No reliance on network connection, can be portable and
modular to other devices without relying on a specific computer's
camera system

Privacy: Having on-device compute without transferring facial data
gives users a guarantee that their information is secure
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Data Collection
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Context

Because cheap consumer devices (e.g., Kinect) acquire row-resolution, noisy depth data, we could not train our algorithm on clean,

synthetic images as was done in our previous CVPR work. Instead, we recorded several people sitting in front of a Kinect (at about one

meter distance). The subjects were asked to freely turn their head around, trying to span all possible yaw/pitch angles they could

perform.
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Head pose estimation dataset
from Kaggle.

Used Al-labeling in Edge Impulse
for “up”, “"down”, “left”, “right”,
and "straight” labels.

Challenge: Manually cleaning up
dataset for more accurate labels
took quite a while.



Preprocessing an NN Architecture

Utilized Edge Impulse’s built in Image
pre-processing

Challenge: | initially used a pre-trained
pose estimation block, which had way
better accuracy, but this turned out to be
too big to fit on my embedded camera

Utilized the MobileNetV2 160x160 0.35
NN architecture to train model

Challenge: Since only int8 quantization
fits on my embedded camera, finding
the right balance of efficiency and
accuracy with the MobileNet
architectures took much trial and error.



Training and Testing Results

Test data

Model testing output

Set the 'expected outcome' for each sample to the desired outcome to automatically score the impulse.
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Results Model version: ®

76.89%

Metrics for Transfer learning
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The model has the most trouble classifying when your head is “straight”.
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Model Deployment

XIAO_ESP32S3:

Product ID:

Vendor ID:

Version:
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Manufacturer:
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Extra Operating Current (mA):
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Once the model is deployed, we connect
the XAO ESP32-S3 to our computer via a
TinyUSB Adafruit library.

Real-time deployment yields a
classification time of 200ms.

We can then develop an embedded ML
application to detect head motions to
control the computer interface.

Challenge: The accuracy of the
real-time model is heavily biased
towards “up” and “down”, which is
comes from combination of physical
position sensitivity and model accuracy
<80%. In addition, accuracy decreases
when there are multiple people in the
camera frame.



